Резка толстого металла: требования к инструменту

Рассмотрены возможности резки толстого металла в современных условиях, а именно: кислородная резка, дуговая резка, гильотинная резка и резка кумулятивной струей. Отражены особенности резки толстых металлов, физические механизмы процесса резки толстых металлов

Кислородная резка

Кислородная резка во многих случаях механтзируется с помощью специальных

переносных приборов и газорезательных машин. При газокислородной резке используют не только ацетилен, но и другие горючие газы, например природный и нефтяной газы, водород, а также жидкое топливо – керосин и бензин.

Газокислородная резка с качеством и производительностью превышает много других способов резки, поэтому его широко применяют.

Важным является также способ резки кислородным копьем, который применяют при пропиливании металла в металлургических печах, создании отверстий в бетонах и др. Резку кислородным копьем выполняют с помощью трубки из малоуглеродистой стали, в которую к месту резки подают кислород. Сначала место резки и конец трубки подогревают пламенем газосварочного паяльника, а затем в трубку подают кислород. Когда конец трубки загорится, его прижимают к месту резки и процесс резки осуществляется за счет сгорания металла трубки и изделия в струе кислорода.

Дуговая резка

Для разрезания стали толщиной 650 мм используют электроды диаметром 4.. 5 мм и силу тока 300400 А. Покрытие этих электродов изготавливают из компонентов,

богатых на кислород (магниевая руда, оксиды железа), а также из компонентов, которые способствуют активному газообразованию (древесная мука, целлюлоза электродная и др.)

Универсальные инжекторные резаки

 Одним из современных способов резки толстых листов металла является использование инжекторной резки. Инжекторный резак состоит из ствола и наконечника. Инжекторное устройство резака является такимже как и устройство горелки.

К прочтению:  Где можно купить двухлористое олово?

Мундштуки должны быть особо ответственными деталями резаков. На сегодня все мундштуки изготавливают из бронзы БрХ0,5.

Мундштуки выпускают с кольцевым пламенем (рис. а) и многосопловые (рис. б).

 Конструкция мундштуков резаков

а — щелевые, б — многосопловые: 1 — подогревающем пламени, 2 — режущий кислород чистый

Требования к резакам

Согласно ГОСТ 5191-79Е, резаки, которые предназначены для разделительной резки кислородом (толщиной металла, подвергающаяся разрезанию), подразделяются на следующие мощности:

  • малой,
  • средней,
  • большой.

К резакам:

  • малой мощности могут резать металл 5 мм и более до 100 мм,
  • средней мощности могут резать металл 8 мм и более до 200 мм,
  • большой мощности могут резать металл 10 мм и более до 300 мм.

Резка металла 3 мм до 100 мм толщиной возможна также с помощью вставных резаков. Следует помнить, что вставных резаков большой мощности не существует.

Резак

Каждый резак идет с мундштуками c размерами 0, 1, 2, 3, 4, 5, 6.

В зависимости от типа и модели резака, сменные мундштуки разделяют:

  • на составляющие (внешние и внутренние),
  • моноблочные (неразборные).

Длина резаков согласно ГОСТ должна быть не более 700 мм.

Гильотинная резка

Гильотинная резка – это прямолинейное резания листового металла. Металл режется противоположными лезвиями двух ножей.

Во время резки подвижный нож движется по отношению к неподвижному с зазором, определяемым условиями резания.

Подвижный нож может быть выставлен под углом по отношению к недвижимому для того, чтобы резание происходило последовательно, с одной стороны к другой. Этот угол называется углом между ножами, уменьшает усилие резания, но увеличивает ход подвижного ножа.

Гильотина это устройство которое состоит из станины с рабочим столом, системы прижима листа, верхнего и нижнего ножей и заднего упора. Задний упор обеспечивает нужный размер детали, которая отрезается.

Гильотинная резка металла 5 мм

Задний угол верхнего ножа незначительно влияет на усилие резки. При использовании 2-х лезвий с 4-мя режущими кромками нужны более повышенные усилия резания, чем тогда, когда верхнее лезвие установлено с небольшим задним углом (как правило, не больше 3°).

Угол между лезвиями существенно влияет на усилие резания и влияет на дефекты. Данный угол не должен быть больше 3°.

Зазор между ножами это перпендикулярная линия между ними. Чистота реза зависит от толщины листа. Если зазор слишком мал, наблюдается повышенный износ ножей, что предусматривает расходы на заточку инструмента. Если зазор слишком большой – металл сминается между двумя ножами. В результате мы получим конусновидный срез и пластические деформации в материале.

Гильотина для резки металла 3 мм и больше

Общими недостатками гильотинной резки является: скручивание, саблевидность, сгиб и не прямолинейность кромки.

Гильотинные ножницы для резки толстого металла применяется для листов толщиной до 5 мм. Край получается ровным, но важно поддерживать зазор между лезвиями 0,03 мм.

Гильотинные ножницы

Резкая кумулятивной струей

Один из основных методов резки металлов взрывом основывается на применении явления образования кумулятивных струй. Небольшие заряды используют для пробивания отверстий на большой глубине в трубах при добыче нефти и газа. Кумулятивные заряды также используют для разрушения крупногабаритных железобетонных массивов и каменных монолитов.

Действие кумулятивного заряда

а схема кумулятивного заряда,

б схема формирования кумулятивной струи,

в схема пробития преграды кумулятивной струей

Резка толстых металлов взрывом с успехом используют для обработки техники, отслужившая, крупногабаритных объектов, мостов. Причем в последнем случае эти операции можно проводить под водой. Данная технология, как и другие виды взрывной обработки, не требует дорогостоящего оборудования, а стоимость взрывчатых веществ относительно невелика.

Особенности резки толстых металлов

 На обрабатываемость резанием толстых металлов влияют технологические условия его обработки. В первую очередь следует обратить внимание на жесткость технологической системы резания. Если жесткость системы снижена возникают вибрации, в результате действия которых, фактическая скорость резания возрастает за счет наложения скорости колебательного процесса режущей кромки инструмента. В зависимости от жесткости системы резки фактическая скорость может возрастать на 1540%, заметно снижая устойчивость инструмента в процессе резания труднообрабатываемых металлов, которые очень чувствительны к изменению скорости резки. К возможностям повышения жесткости технологической системы можно отнести изменения схемы крепления детали, уменьшение вылета резца, увеличение жесткости инструмента, применения устройств гашения вибраций и тому подобное. Для толстых и труднообрабатываемых металлов необходимо искать такие сочетания режимных и других технологических факторов, которые способствовали бы улучшению пластичности обрабатываемого материала в сочетании с его нагревом в зоне резания.

Другое направление — дополнительная внешняя стимуляция (наложения ультразвуковых колебаний, введение электрического тока и тому подобное).

Физический механизм процесса толстых резания металлов, который основан на дислокационно-энергетических закономерностях пластического деформирования и разрушения, дает возможность объяснить природу некоторых известных методов улучшения обрабатываемости, например, нагрев обрабатываемого материала в процессе резания. Этот метод, как правило, приводит к уменьшению твердость труднообрабатываемых материалов. Процесс деформирования также облегчается счет роста роли термической активации преодоления дислокациями барьеров, развитие диффузионных процессов.

Как альтернатива значительного количества критериев можно предложить один общий или интегральный показатель обрабатываемости и оптимальности резки в виде удельного энергоемкости процесса, основанный на определении затраченной энергии на снятие единицы объема припуска. Применение энергетического критерия целесообразно реализовывать для практических задач оптимального назначения технологических условий резания деталей.

Энергия на пластическое деформирование зоны резания распределяется неравномерно и зависит от режимов резания и геометрии инструмента. Наибольшие затраты приходятся как правило на деформацию металла выше поверхности среза (95% и более работы пластического деформирования).

Отсюда можно сделать вывод: для улучшения обрабатываемости достаточно уменьшить твердость слоя металла, который снимается.

Улучшение обрабатываемости металлов и сплавов до или во время обработки является важным эффективным средством управления процессом резания, а также средством достижения минимизации энергозатрат.

Управляя обрабатываемостью, можно назначать такие условия резания, которые будут оптимальные со всех точек зрения: сопротивление стружкообразованию, стойкость инструмента, качество обработки.

В зависимости от толщины металла и формы обработки, кромки готовят обрезкой на ножницах, механической строгальным или газовой резкой. Наиболее распространено механизированная газовая резка (в заводских условиях) и ручное газовой резки (в условиях монтажа). После газовой резки поверхность заготовки требует механической обработки до удаления следов резки. А для некоторых сталей (мартенситно-ферритного класса) после газовой резки необходимо механическим удалить слой металла толщиной как минимум 1-2 мм, поэтому перед резанием необходимо предусмотреть припуск. Для обработки высоколегированных сталей применяют пламенную и воздушно-дуговую резку.

  • Существует множество видов разделки кромок:
  • Стыковое соединение без разработки кромок,
  • Стыковое соединение с двухсторонней симметричной обработкой кромки или соединение с К-образной разделкой,
  • Стыковое соединение с односторонней разделкой одной кромки,
  • Стыковое соединение с односторонней симметричным разделкой двух кромок или соединения с V-образным разделкой кромок,
  • Стыковое соединение с двусторонним симметричным обработкой двух кромок или соединения с Х-образным разделкой кромок,
  • Стыковое соединение с односторонним симметричной разделкой двух кромок под разными углами. Как правило, применяется при сварке трубопроводов с толщиной стенки от 10 мм и выше.

Для изготовления деталей особо ответственных конструкций с кромками определенной конфигурации применяют токарные станки, труборезы и другое механическое оборудование. Также можно воспользоваться ручными механическими фрезами и абразивными машинками, если конструкция не является особенно ответственным или ее габариты позволяют прибегнуть к обработке такого вида.

Для получения заготовки, готовой к сборке, необходимо выполнить ее очистки для устранения неровностей, образовавшихся в процессе проката, и транспортировки.

Зачистку выполняют до сборки узла механически или химически. Ниже показаны участки поверхности деталей, требующих очистки:

Во время проведения этого вида огневых работ могут наблюдаться хлопки и обратные удары пламени, что могут привести к разрыву шланга и возникновения пожара.

Обратные удары возникают при условиях:

  • перегрева мундштука,
  • попадание горючего в кислородные шланги,
  • если скорость истечения горючей смеси из мундштука становится меньше скорости горения,
  • ослабление накидной гайки мундштука или камеры смешения.

Воспламенение и взрыв кислородного шланга в случае обратного удара происходит, если в кислородную трубку и шланг попадает жидкое топливо.

При изготовлении металлоконструкций из цветных металлов возникает необходимость их резки. Если выполнение прямолинейных и некоторых криволинейных срезов может быть достигнуто механическими методами в холодном состоянии и не вызывает трудностей, то резка металла большой толщины, изготовление фасонных деталей, отверстий, поверхностной обработки всегда связано с использованием тепловых методов резки.

Плазменная резка сопровождается сильным шумом, который в сочетании с ультразвуковым эффектом является опасным для обслуживающего персонала.

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Понравилась статья? Поделиться с друзьями:
Переработка и утилизации отходов, виды металлов, обзор оборудования, классификация отходов